<
div id=””>
Klingenberg, C. P. Investigating Morphological Integration and Modularity Across Various Levels: Concepts and Analysis. Philosophical Transactions of the Royal Society B: Biological Sciences 369, 20130249 (2014).
Pigliucci, M. Exploring Phenotypic Integration: Investigating the Ecology and Evolution of Complex Traits. Ecology Letters 6, 265–272 (2003).
Klingenberg, C. P. Analyzing Morphometric Integration and Modularity in Landmark Configurations: Assessing Predefined Hypotheses. Evolution & Development 11, 405–421 (2009).
Zelditch, M. L. & Goswami, A. Defining Modularity: Insights from Evolution and Development. Evolution & Development 23, 377–403 (2021).
Evans, K. M., Buser, T. J., Larouche, O. & Kolmann, M. A. Unraveling the Connection Between Developmental and Evolutionary Integration. vol. 145, 22–27 (Elsevier, 2022).
Jones, K. E., Angielczyk, K. D. & Pierce, S. E. Sequential Changes Drive Evolutionary Patterns in Mammalian Vertebral Column Complexity. Nature Communications 10, 1–13 (2019).
Criswell, K. E., Roberts, L. E., Koo, E. T., Head, J. J. & Gillis, J. A. hox gene expression predicts tetrapod-like axial regionalization in the skate, leucoraja erinacea. Proc. Natl Acad. Sci. 118, e2114563118 (2021).
Felice, R. N. & Goswami, A. Developmental origins of mosaic evolution in the avian cranium. Proc. Natl Acad. Sci. 115, 555–560 (2018).
Stevens, R. D. & Guest, E. E. Wings of fringed fruit-eating bats (artibeus fimbriatus) are highly integrated biological aerofoils from perspectives of secondary sexual dimorphism, allometry and modularity. Biological J. Linnean Soc. 137, 711–719 (2022).
Wagner, G. P. The influence of variation and of developmental constraints on the rate of multivariate phenotypic evolution. J. Evolut. Biol. 1, 45–66 (1988).
Schluter, D. Adaptive radiation along genetic lines of least resistance. Evolution 50, 1766–1774 (1996).
Felice, R. N., Randau, M. & Goswami, A. A fly in a tube: macroevolutionary expectations for integrated phenotypes. Evolution 72, 2580–2594 (2018).
Frédérich, B., Olivier, D., Litsios, G., Alfaro, M. E. & Parmentier, E. Trait decoupling promotes evolutionary diversification of the trophic and acoustic system of damselfishes. Proc. R. Soc. B Biol. Sci. 281, 20141047 (2014).
Evans, K. M., Waltz, B. T., Tagliacollo, V. A., Sidlauskas, B. L. & Albert, J. S. Fluctuations in evolutionary integration allow for big brains and disparate faces. Sci. Rep. 7, 1–11 (2017).
Navarro-Díaz, A., Esteve-Altava, B. & Rasskin-Gutman, D. Disconnecting bones within the jaw-otic network modules underlies mammalian middle ear evolution. J. Anat. 235, 15–33 (2019).
Benson, R. B., Hunt, G., Carrano, M. T. & Campione, N. Cope’s rule and the adaptive landscape of dinosaur body size evolution. Palaeontology 61, 13–48 (2018).
Klingenberg, C. P. Cranial integration and modularity: insights into evolution and development from morphometric data. Hystrix 24, 43 (2013).
Klingenberg, C. P. & Marugán-Lobón, J. Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context. Syst. Biol. 62, 591–610 (2013).
Biewener, A. A. Biomechanical consequences of scaling. J. Exp. Biol. 208, 1665–1676 (2005).
Wagner, G. P. & Altenberg, L. Perspective: complex adaptations and the evolution of evolvability. Evolution 50, 967–976 (1996).
– Benson, R. B. & Choiniere, J. N. Rates of dinosaur limb evolution provide evidence for exceptional radiation in Mesozoic birds. Proc. R. Soc. B Biol. Sci. 280, 20131780 (2013). [Article](https://doi.org/10.1098%2Frspb.2013.1780) | [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Rates%20of%20dinosaur%20limb%20evolution%20provide%20evidence%20for%20exceptional%20radiation%20in%20mesozoic%20birds&journal=Proc.%20R.%20Soc.%20B%20Biol.%20Sci.&doi=10.1098%2Frspb.2013.1780&volume=280&publication_year=2013&author=Benson%2CRB&author=Choiniere%2CJN)
– Assis, A. P. A., Rossoni, D. M., Patton, J. L. & Marroig, G. Evolutionary processes and its environmental correlates in the cranial morphology of western chipmunks (Tamias). Evolution 71, 595–609 (2017). [Article](https://doi.org/10.1111%2Fevo.13137) | [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27917480) | [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Evolutionary%20processes%20and%20its%20environmental%20correlates%20in%20the%20cranial%20morphology%20of%20western%20chipmunks%20%28tamias%29&journal=Evolution&doi=10.1111%2Fevo.13137&volume=71&pages=595-609&publication_year=2017&author=Assis%2CAPA&author=Rossoni%2CDM&author=Patton%2CJL&author=Marroig%2CG)
– Lees, A. C. et al. State of the world’s birds. Annu. Rev. Environ. Resour. 47, 231–260 (2022). [Article](https://doi.org/10.1146%2Fannurev-environ-112420-014642) | [Google Scholar](http://scholar.google.com/scholar_lookup?&title=State%20of%20the%20world%E2%80%99s%20birds&journal=Annu.%20Rev.%20Environ.%20Resour.&doi=10.1146%2Fannurev-environ-112420-014642&volume=47&pages=231-260&publication_year=2022&author=Lees%2CAC)
– Orkney, A., Bjarnason, A., Tronrud, B. C. & Benson, R. B. Patterns of skeletal integration in birds reveal that adaptation of element shapes enables coordinated evolution between anatomical modules. Nat. Ecol. Evol. 5, 1250–1258 (2021). [Article](https://doi.org/10.1038%2Fs41559-021-01509-w) | [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34282318) | [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Patterns%20of%20skeletal%20integration%20in%20birds%20reveal%20that%20adaptation%20of%20element%20shapes%20enables%20coordinated%20evolution%20between%20anatomical%20modules&journal=Nat.%20Ecol.%20Evol.&doi=10.1038%2Fs41559-021-01509-w&volume=5&pages=1250-1258&publication_year=2021&author=Orkney%2CA&author=Bjarnason%2CA&author=Tronrud%2CBC&author=Benson%2CRB)
– Dial, K. P. Evolution of avian locomotion: correlates of flight style, locomotor modules, nesting biology, body size, development, and the origin of flapping flight. Auk 120, 941–952 (2003).Article
Google Scholar
Billerman, S. M., Keeney, B. K., Rodewald, P. G. S. T. S. Birds of the world. https://birdsoftheworld.org/bow/home (2022).
Mayr, G. Old world fossil record of modern-type hummingbirds. Science 304, 861–864 (2004).
McGuire, J. A. et al. Molecular phylogenetics and the diversification of hummingbirds. Curr. Biol. 24, 910–916 (2014).
Torres, C. R., Norell, M. A. & Clarke, J. A. Bird neurocranial and body mass evolution across the end-cretaceous mass extinction: The avian brain shape left other dinosaurs behind. Sci. Adv. 7, eabg7099 (2021).
<
p class=”c-article-references__links u-hide-print”>Article
ADS
PubMed
PubMed Central
Google Scholar
Videler, J. J. Avian flight (Oxford University Press, 2006).
Taylor, G. & Thomas, A. Evolutionary biomechanics (OUP Oxford, 2014).
Nudds, R. L., Kaiser, G. W. & Dyke, G. J. Scaling of avian primary feather length. PLoS One 6, e15665 (2011).
Nudds, R. L. Wing-bone length allometry in birds. J. Avian Biol. 38, 515–519 (2007).
Hedrick, B. P., Dickson, B. V., Dumont, E. R. & Pierce, S. E. The evolutionary diversity of locomotor innovation in rodents is not linked to proximal limb morphology. Sci. Rep. 10, 1–11 (2020).
Navalón, G., Bjarnason, A., Griffiths, E. & Benson, R. B. Environmental signal in the evolutionary diversification of bird skeletons. Nature 611, 306—311 (2022).
Another study conducted by Baumgart, S. L., Sereno, P. C., and Westneat, M. W., explored wing morphology in waterbirds and its association with behavior, habitat, migration, and phylogenetic convergence. The findings were published in Integrative Organismal Biology in 2021. The article is available for reading on the publisher’s website, and you can also find it on Google Scholar.
Simons, E. L., and O’connor, P. M., studied bone laminarity in avian forelimb skeletons and its relation to flight modes to test functional interpretations. The research was published in The Anatomical Record in 2012. You can read the article or access it on Google Scholar.
Mitchell, J., Legendre, L. J., Lefevre, C., and Cubo, J. examined bone histological features related to soaring and high-frequency flapping flight in birds’ furculae. The study was published in Zoology in 2017. You can find the article or check it out on Google Scholar.
Hieronymus, T. L. conducted a study focusing on qualitative skeletal characteristics.Study by Tobalske (2010) focuses on hovering and intermittent flight in birds, emphasizing their flight behavior. Another research by Tobalske (1996) explores the relationship between muscle composition, wing morphology, and flight behavior in woodpeckers. Shatkovska and Ghazali (2023) discuss the covariation in shapes between the sternum and pelvis in aquatic birds with different locomotor modes. Lowi-Merri et al. (2021) investigate the link between sternum variation and locomotion mode in birds. Additionally, Lowi-Merri et al. (2023) reconstruct the locomotor ecology of extinct avialans by comparing sternum morphology and skeletal proportions in a study on ichthyornis.Google Scholar
Hallgrímsson, B. & Maiorana, V. Variability and size in mammals and birds. Biol. J. Linn. Soc. 70, 571–595 (2000).
Hallgrímsson, B., Willmore, K. & Hall, B. K. Canalization, developmental stability, and morphological integration in primate limbs. Am. J. Phys. Anthropol. 119, 131–158 (2002).
Rothier, P. S., Fabre, A.-C., Clavel, J., Benson, R. B. & Herrel, A. Mammalian forelimb evolution is driven by uneven proximal-to-distal morphological diversity. Elife 12, e81492 (2023).
Bell, E., Andres, B. & Goswami, A. Integration and dissociation of limb elements in flying vertebrates: a comparison of pterosaurs, birds and bats. J. Evolut. Biol. 24, 2586–2599 (2011).
-
Wing, S. L. & Tiffney, B. H. The reciprocal interaction of angiosperm evolution and tetrapod herbivory. Rev. Palaeobot. Palynol. 50, 179–210 (1987).
-
Baken, E., Collyer, M., Kaliontzopoulou, A. & Adams, D. geomorph v4.0 and gmshiny: enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods in Ecology and Evolution 12, 2355–2363 (2021).
-
Adams, D., Collyer, M., Kaliontzopoulou, A. & Baken, E. Geomorph: Software for geometric morphometric analyses. R package version 4.0.7. https://cran.r-project.org/package=geomorph (2024).
-
Collyer, M. & Adams, D. RRPP: Linear Model Evaluation with Randomized Residuals in a Permutation Procedure, R package version 2.0.0 https://cran.r-project.org/package=RRPP (2024).
-
Collyer, M. & Adams, D. RRPP: An R package for fitting linear models to high‐dimensional data using residual randomization (2018).
-
Prum, R. O. et al. A comprehensive phylogeny of birds (aves) using targeted next-generation dna sequencing. Nature 526, 569–573 (2015).
-
Oliveros, C. H. et al. Earth history and the passerine superradiation. Proc. Natl Acad. Sci. 116, 7916–7925 (2019).
Felsenstein, J. Phylogenies and the comparative method. Am. Naturalist 125, 1–15 (1985).
Gatesy, S. M. & Middleton, K. M. Bipedalism, flight, and the evolution of theropod locomotor diversity. J. Vertebrate Paleontol. 17, 308–329 (1997).
Monteiro, L. R., Bonato, V. & Dos Reis, S. F. Evolutionary integration and morphological diversification in complex morphological structures: mandible shape divergence in spiny rats (rodentia, echimyidae). Evol. Dev. 7, 429–439 (2005).
Klingenberg, C. P. Morphological integration and developmental modularity. Annu. Rev. Ecol. Evol. Syst. 39, 115–132 (2008).
Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
<
p class=”c-article-references__links u-hide-print”>Article– The article references various resources used in phylogenetic comparative biology and statistical computing.
– The references include links to Google Scholar, external packages, articles, CAS, PubMed, and R Foundation for Statistical Computing.
– Each reference provides valuable information related to the field of study and the tools used for analysis.
– Researchers can explore these resources to deepen their understanding of phylogenetic comparative biology and statistical analysis techniques in R.- A reference to an article titled “ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R” by Paradis, E and Schliep, K published in Bioinformatics in 2018 is available on Google Scholar.
- An article on “dplyr: A Grammar of Data Manipulation” by Wickham, H., François, R., Henry, L., Müller, K. & Vaughan, D. was published in the R package version 1.1.1 in 2023. Access the information here.
- Wickham, H. discussed reshaping data with the reshape package in the article published in the J. Stat. Softw. in 2007. More details can be found here.
-
An article on “zoo: S3 infrastructure for regular and irregular time series” by Zeileis, A. & Grothendieck, G. was published in J. Stat. Softw. in 2005. Access the article through Google Scholar.- ggpubr. R package version 0.6.0 (2023).
- Slowikowski, K. ggrepel: Automatically Position Non-Overlapping Text Labels with ’ggplot2’. ggrepel. R package version 0.9.3 (2023).
- Urbanek, S. jpeg: Read and write JPEG images. jpeg. R package version 0.1-10 (2022).
- Ooms, J. magick: Advanced Graphics and Image-Processing in R. magick. R package version 2.8.2 (2023).
- Urbanek, S. png: Read and write PNG images. png. R package version 0.1-8 (2022).